Skip to content

Could Miracles Happen?

November 14, 2013

Another great article on Aeon magazine this week is about why no one should believe in miracles, by Lawrence Shapiro.  Shapiro takes a tasty stock of Hume’s argument against miracles, adds a dash of Bayesian epistemology, and rounds things off with a nice discussion of the base-rate fallacy—surely worth a read.  But after reading it, I wondered why we don’t use this much simpler argument against supernatural intervention:


  1. Miracles violate the laws of nature.
  2. The laws of nature are exceptionless—that is, they are (expressed by) true universal generalizations
  3. Conclusion: There are no miracles.

The argument is valid, and both of its premises have a claim not merely to truth, but to conceptual truth. The first premise is a characterization of what makes God’s miraculous action supernatural: miracles contravene or override the natural laws which govern the world.  The second premise is guaranteed by most views about the laws of nature, but anyway here’s a quick argument for it: the laws of nature are nomically necessary, and necessity implies truth.  So the laws are true.  Unless something has gone wrong, we don’t merely have inductive reasons to doubt that miracles have happened (as Hume and Shapiro claim) but a priori reason: the very idea is conceptually incoherent. But of course this argument is too quick: though we may have good reason to doubt that miracles have happened, that reason is not conceptual incoherence.  What went wrong?

We could deny premise 1: perhaps there’s a way of characterizing supernatural intervention that doesn’t rely on it’s being above the petty rules which govern mortal mechanics.   We’ll return to this idea in a bit.  First, though, I’d like to look into relaxing the second premise.  Could a law of nature be false?

Some people think so—Nancy Cartwright chief amongst them.  But she’s an outlier, and most theories of natural law back premise two.  Foremost amongst these is dispositional essentialism: According to this view, advocated by Brian Ellis and Alexander Bird, the laws express the essential natures of the properties they involve.  So if Coulomb’s law is a law of nature, it’s an essential property of charge that charged objects obey Coulomb’s law.  Since things have their essential properties at every world in which they exist, charged objects must—and do—conform strictly to Coulomb’s law.

Humeans, on the other hand, take laws to be mere regularities, not backed by essences or necessity.  Now these regularity theorists have some explaining to do: why are some generalizations laws, and others mere accidents?  What is the difference between “Like charged particles repel one another” and “all of my coffee mugs are dirty”?

The regularity theorist’s answer is pragmatic: laws are tools used to organize our knowledge into a deductive system. “like charged particles repel one another” is inferentially very useful; “all of my coffee mugs are dirty” is not.  This insight leads us to the Best Systems Account of laws (BSA), associated with John Stuart Mill, Frank Ramsey, and David Lewis:  the laws of nature are those true generalizations which, taken together, form the simplest, strongest axiomatic system of all of the truths of the world—where a system is simpler if it has fewer axioms, and stronger if it implies more truths.

We can imagine assigning a score to each potential lawbook: points are gained by having true consequences, deducted for having more axioms.  The group of true generalizations which scores highest is the lawbook of our world.

This characterization of laws gives regularity theorists more room to maneuver than dispositional essentialists.  The dispositional essentialist held that laws are true because they are metaphysically necessary; the Humean holds that laws are true because true generalizations better organize knowledge than false ones.

So it’s not against the spirit of Humeanism to relax the truth condition if adding some false generalization to our deductive system would yield a simpler system from which very many truths and very few falsehoods could be inferred.  We’d just need to tweak our scoring rules a bit: a potential system of laws gets points added for each true consequence, points deducted for each axiom, and points deducted for each false consequence.  Presumably, these will be weighted—one false consequence should remove many more points than each true consequence.  Call this the Good Enough System Account of laws (GESA).  The laws of the Good Enough System can have exceptions, provided the exceptions are few, and the laws are otherwise quite useful.

Now, if the GESA of laws is right, we shouldn’t be so sure of Premise 2 of the a priori argument.  We might have good reason to think that miracles don’t happen, but they aren’t ruled out by fiat.

Of course, we might also want to deny premise 1.  Remember, Premise 1 sought to express what was miraculous about miracles: God’s direct interventions violate the laws that govern mortal mechanics.  But God’s interventions must be interventions, that is, they must really cause things.  And causation requires subsumption under laws.  So while in order for divine intervention to be divine, it must break the natural laws, in order for it to be intervention, it must obey some law.  What gives?

Here, I think, we should distinguish between fundamental and nonfundamental lawhood.  Even in mortal contexts, we are willing to countenance not-strictly-speaking-true nonfundamental laws (read: the special sciences) but not false fundamental laws (read: physics).  This makes the GESA more closely aligned with how we think of special sciences, and the BSA—with its stipulation that the laws must be true—closer to how we think of fundamental science.  (The view we’ve arrived at is similar to Craig Callender and Jonathan Cohen’s Better Best System account, but allows us to distinguish the fundamental laws from the nonfundamental: the fundamental laws are true, whereas the nonfundamental laws may not be).

The believer in miracles, then, takes the fundamental law to be divine: “what God intends comes to pass”.  But this doesn’t leave her bereft of mortal mechanics: instead of being strictly true, the natural laws of physics are nonfundamental laws: most of their consequences are true, but their usefulness to us isn’t impugned by those miraculous occasions when they lead us astray.

Don’t get me wrong, though—while I think the a priori argument is unsound, denying it shouldn’t make us more willing to countenance miraculous intervention.  Hume’s argument, and Shapiro’s, should remind us that believing miracles actually happen is, nearly always, irrational.

About these ads
3 Comments leave one →
  1. November 14, 2013 10:09 pm

    Reblogged this on SelfAwarePatterns.

  2. Alison Fernandes permalink
    December 16, 2013 12:52 pm


    I wanted to hear more about the proposal in the 3rd and 2nd last paragraphs- and what you’d think about an alternative here.

    It sounds like the proposal is that occurrence of the miracle obeys a fundamental law (what God intends comes to pass) but that all the other mechanical laws, etc., will have to be non-fundamental. Does this mean that there are many more divine-fundamental-laws than we thought (that God wants lots of things to come to pass) or that we have lots of non-fundamental laws that aren’t grounded or to be explained in terms of anything more fundamental? The first option is reminiscent of a few views from the history of philosophy, but it seems worrying if allowing for miracles commits us to it. The second seems to go against our usual way of thinking about fundamentality though.

    As for an alternative, I was wondering how we should be thinking about interventions here and what it takes to satisfy the requirement that ‘they must really cause things’. Couldn’t we instead claim that the intervention itself obeyed no laws, but that, as an intervention, it did cause other events to happen? My thought is that no laws whatsoever explain or govern the parting of the sea, the igniting of the bush and so forth, that these simply constitute the intervention, but that these events then do become connected to the causal nexus, causing further events downstream. And this seems enough to satisfy the requirement that the intervention causes events. (I’m thinking of this rather along the lines of Kantian first-causes.)

    Part of the reason I’m curious is that it bears on how we should think about interventions more generally–and whether they should be something we can model within the system.

  3. December 19, 2013 11:45 am

    Hey Alison,

    First, I was thinking of something like the former view, but not that there are many more divine-fundamental-laws; rather, God’s desires seem a bit more like initial conditions. So the nonfundamental laws are grounded in what God wants, and in the law that what God wants comes to pass.

    Second, I’m worried about the idea of a causal intervention that’s divorced from the notion of a law. I don’t think that whenever we consider a system, we must model interventions on the system as part of the system. So, if we’re considering a set of billiard balls, we might develop a model of those ball, and this model might be causal in the sense that it tells us what an intervention on the cue ball will do to the other balls. We don’t need include interventions as part of the model of the system (a) for the model to be primarily used to tell us what will happen under interventions, or (b) for the causal relations within the model to be understood in terms of interventions.

    Nonetheless, if we want to say that the interventions are *causal* interventions I think there needs to be *some* larger, modelable system in which they feature, and I think connecting the nodes of that system will require us to appeal to laws.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Get every new post delivered to your Inbox.

Join 119 other followers

%d bloggers like this: